```{.} (************************************************************************) (THESIS CODE) (RCK Model with TvsY and G=T) (************************************************************************)
Clear All; Remove[βGlobal`*β];
(Initial Params) n = 0.00553; g = -0.00320; [Alpha] = 1/3; (1/3) [Rho] = 0.03776; TsY = 0.20990; [Theta] = 0.72; [Delta] = 0; (Changed in sensitivity analysis)
(Steady State Functions) kDot[[Alpha], g, n_, [Delta], Tsy] := k[t]^[Alpha] - (([Delta] + n + g)k[t]) - c[t] - Tsyk[t]^[Alpha]; cDot[[Alpha], g, n_, [Delta], [Rho], [Theta]] := (1/[Theta]([Alpha] (k[ t]^([Alpha] - 1)) - [Rho]) - ([Delta] + n + g))c[t]; kFormula := kDot[[Alpha], g, n, [Delta], TsY]; cFormula := cDot[[Alpha], g, n, [Delta], [Rho], [Theta]]; cFunction := c[t] /. Flatten@Solve[kFormula == 0, c[t]]; (Called in Program) kStar := k[t] /. Flatten@Solve[cFormula == 0, k[t]]; cStar := cFunction /. k[t] -> kStar; yStar[[Alpha]] := kStar^[Alpha]; gStar[[Alpha], TsY] := TsYyStar[[Alpha]]; iStar[[Alpha], TsY] := yStar[[Alpha]] - cStar - gStar[[Alpha], TsY]; (Saddle Functions) derivck[k_] := cFormula/kFormula /. {c[t] -> c[k], k[t] -> k}; saddleBelow[kStar_, cStar_] := NDSolve[{cβ[k] == derivck[k], c[kStar] == cStar - 0.00001}, c, {k, 0.01, kStar}]; saddleAbove[kStar_, cStar_] := NDSolve[{cβ[k] == derivck[k], c[kStar] == cStar + 0.00001}, c, {k, kStar, 40}]; pathFrom[kStar_, cStar_, OldkStar_] := NDSolve[{cβ[k] == derivck[k], c[kStar] == cStar + 0.00001}, c, {k, OldkStar, kStar}]; kPathFrom[cTime_, OldkStar_] := NDSolve[{kβ[t] == kFormula /. c[t] -> cTime[k[t]], k[0] == OldkStar}, k, {t, 0, 100}] ; cPathFrom[kTime_, OldcStar_] := NDSolve[{cβ[t] == cFormula /. k[t] -> kTime[t], c[0] == OldcStar}, c, {t, 0, 100}] ; (***********************************************************************) (INITIAL EQUILIBRIUM) (Other eqs, [Theta]=0.89,1.25,1.61, characterized as low, mid, and
high respectively) Print[βSteady state with initial value of [Theta] = 0.72:β] kStar1 = kStar; cStar1 = cStar; yStar1 = yStar[[Alpha]]; gStar1 = gStar[[Alpha], TsY]; iStar1 = iStar[[Alpha], TsY]; cStar1Line = Graphics[{Dashed, Line[{{0, cStar1}, {100, cStar1}}]}]; iStar1Line = Graphics[{Dashed, Line[{{0, iStar1}, {100, iStar1}}]}]; Print[βy: β, yStar1] Print[βc: β, cStar1] Print[βi: β, iStar1] Print[βg: β, gStar1] Print[βk: β, kStar1] Print[βy/y: β, yStar1/yStar1] Print[βc/y: β, cStar1/yStar1] Print[βi/y: β, iStar1/yStar1] Print[βg/y: β, gStar1/yStar1] Print[βk/y: β, kStar1/yStar1] (Loci) kLocus1 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}]; cLocusc1 = Graphics[{Dashed, Line[{{kStar1, 0.01}, {kStar1, 5}}]}]; ckLoci1 = Show[kLocus1, cLocusc1, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar1, cStar1][[1]]; InitialTrajectoryBelow = Plot[ck1[k], {k, 0.01, kStar1}, PlotStyle -> {Red, Dashed}]; ck2 = c /. saddleAbove[kStar1, cStar1][[1]]; InitialTrajectoryAbove = Plot[ck2[k], {k, kStar1, 40}, PlotStyle -> {Red, Dashed}]; (************************************************************************) [Theta] = 0.89; Print[βSteady state with new value of [Theta] = 0.89:β] ([Theta]=0.89 EQUILIBRIUM) kStar089 = kStar; cStar089 = cStar; yStar089 = yStar[[Alpha]]; gStar089 = gStar[[Alpha], TsY]; iStar089 = iStar[[Alpha], TsY]; Print[βy:β, yStar089] Print[βc:β, cStar089] Print[βi:β, iStar089] Print[βg:β, gStar089] Print[βk:β, kStar089] Print[β[CapitalDelta]y%: β, (((yStar089 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar089 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar089 - iStar1)/iStar1))*100]; Print[β[CapitalDelta]k%: β, (((kStar089 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time089 = c /. pathFrom[kStar089, cStar089, kStar1][[1]]; kPath089 = k /. kPathFrom[Time089, kStar1][[1]]; yPath089[time_] := kPath089[time]^[Alpha]; cPath089 = c /. cPathFrom[kPath089, Time089[kStar1]][[1]]; iPath089[time_] := (yPath089[time](1 - TsY)) - cPath089[time] ytPathPlot089 = Plot[yPath089[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.25], PlotLegends -> {β[Theta]=0.89β}]; ctPathPlot089 = Plot[cPath089[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.25], PlotLegends -> {β[Theta]=0.89β}]; itPathPlot089 = Plot[iPath089[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.25], PlotLegends -> {β[Theta]=0.89β}]; ktPathPlot089 = Plot[kPath089[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.25], PlotLegends -> {β[Theta]=0.89β}];
Print[βChanges from [Theta]=0.72 to [Theta]=0.89 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath089[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath089[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath089[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath089[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath089[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath089[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath089[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath089[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath089[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath089[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath089[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath089[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=0.89:β] Print[β5y%: β, yPath089[5]] Print[β5c%: β, cPath089[5]] Print[β5i%: β, iPath089[5]] Print[β5k%: β, kPath089[5]] Print[β10y%: β, yPath089[10]] Print[β10c%: β, cPath089[10]] Print[β10i%: β, iPath089[10]] Print[β10k%: β, kPath089[10]] Print[β20y%: β, yPath089[20]] Print[β20c%: β, cPath089[20]] Print[β20i%: β, iPath089[20]] Print[β20k%: β, kPath089[20]] (************************************************************************) [Theta] = 1.25; Print[βSteady state with new value of [Theta] = 1.25:β] ([Theta]=1.25 EQUILIBRIUM) kStar125 = kStar; cStar125 = cStar; yStar125 = yStar[[Alpha]]; gStar125 = gStar[[Alpha], TsY]; iStar125 = iStar[[Alpha], TsY]; Print[βy:β, yStar125] Print[βc:β, cStar125] Print[βi:β, iStar125] Print[βg:β, gStar125] Print[βk:β, kStar125] Print[β[CapitalDelta]y%: β, (((yStar125 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar125 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar125 - iStar1)/iStar1))*100]; Print[β[CapitalDelta]k%: β, (((kStar125 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time125 = c /. pathFrom[kStar125, cStar125, kStar1][[1]]; kPath125 = k /. kPathFrom[Time125, kStar1][[1]]; yPath125[time_] := kPath125[time]^[Alpha]; cPath125 = c /. cPathFrom[kPath125, Time125[kStar1]][[1]]; iPath125[time_] := (yPath125[time](1 - TsY)) - cPath125[time] ytPathPlot125 = Plot[yPath125[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.5], PlotLegends -> {β[Theta]=1.25β}]; ctPathPlot125 = Plot[cPath125[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.5], PlotLegends -> {β[Theta]=1.25β}]; itPathPlot125 = Plot[iPath125[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.5], PlotLegends -> {β[Theta]=1.25β}]; ktPathPlot125 = Plot[kPath125[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.5], PlotLegends -> {β[Theta]=1.25β}];
Print[βChanges from [Theta]=0.72 to [Theta]=1.25 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath125[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath125[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath125[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath125[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath125[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath125[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath125[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath125[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath125[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath125[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath125[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath125[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.25:β] Print[β5y%: β, yPath125[5]] Print[β5c%: β, cPath125[5]] Print[β5i%: β, iPath125[5]] Print[β5k%: β, kPath125[5]] Print[β10y%: β, yPath125[10]] Print[β10c%: β, cPath125[10]] Print[β10i%: β, iPath125[10]] Print[β10k%: β, kPath125[10]] Print[β20y%: β, yPath125[20]] Print[β20c%: β, cPath125[20]] Print[β20i%: β, iPath125[20]] Print[β20k%: β, kPath125[20]] (************************************************************************) [Theta] = 1.61; Print[βSteady state with new value of [Theta] = 1.61:β] ([Theta]=1.61 EQUILIBRIUM) kStar161 = kStar; cStar161 = cStar; yStar161 = yStar[[Alpha]]; gStar161 = gStar[[Alpha], TsY]; iStar161 = iStar[[Alpha], TsY]; Print[βy:β, yStar161] Print[βc:β, cStar161] Print[βi:β, iStar161] Print[βg:β, gStar161] Print[βk:β, kStar161] Print[β[CapitalDelta]y%: β, (((yStar161 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar161 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar161 - iStar1)/iStar1))*100]; Print[β[CapitalDelta]k%: β, (((kStar161 - kStar1)/kStar1))100]; (Loci) kLocus161 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}]; (To better see change in steady state plot) kLocus161Zoom = Plot[cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}]; cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]}]; ckLoci161 = Show[kLocus161, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (To better see change in steady state plot) ckLoci161Zoom = Show[kLocus161Zoom, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar161, cStar161][[1]]; TrajectoryBelow161 = Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle -> {Red}]; ck2 = c /. saddleAbove[kStar161, cStar161][[1]]; TrajectoryAbove161 = Plot[ck2[k], {k, kStar161, 40}, PlotStyle -> {Red}]; (Time Path FROM Initial Equilibrium) Time161 = c /. pathFrom[kStar161, cStar161, kStar1][[1]]; kPath161 = k /. kPathFrom[Time161, kStar1][[1]]; yPath161[time_] := kPath161[time]^[Alpha]; cPath161 = c /. cPathFrom[kPath161, Time161[kStar1]][[1]]; iPath161[time_] := (yPath161[time](1 - TsY)) - cPath161[time] ytPathPlot161 = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.75], PlotLegends -> {β[Theta]=1.61β}]; ctPathPlot161 = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.75], PlotLegends -> {β[Theta]=1.61β}]; itPathPlot161 = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.75], PlotLegends -> {β[Theta]=1.61β}]; ktPathPlot161 = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.75], PlotLegends -> {β[Theta]=1.61β}];
(Rewriting legends from previous plot for later sensitivity analysis) ytPathPlot161a = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.25], PlotLegends -> {β[Rho]=0.03776β}]; ctPathPlot161a = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.25], PlotLegends -> {β[Rho]=0.03776β}]; itPathPlot161a = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.25], PlotLegends -> {β[Rho]=0.03776β}]; ktPathPlot161a = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.25], PlotLegends -> {β[Rho]=0.03776β}]; ytPathPlot161b = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.25], PlotLegends -> {βTsY=0.20990β}]; ctPathPlot161b = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.25], PlotLegends -> {βTsY=0.20990β}]; itPathPlot161b = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.25], PlotLegends -> {βTsY=0.20990β}]; ktPathPlot161b = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.25], PlotLegends -> {βTsY=0.20990β}]; ytPathPlot161c = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.25], PlotLegends -> {β[Delta]=0β}]; ctPathPlot161c = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.25], PlotLegends -> {β[Delta]=0β}]; itPathPlot161c = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.25], PlotLegends -> {β[Delta]=0β}]; ktPathPlot161c = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.25], PlotLegends -> {β[Delta]=0β}]; ytPathPlot161d = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.25], PlotLegends -> {β[Delta]=0, TsY=0.20990β}]; ctPathPlot161d = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.25], PlotLegends -> {β[Delta]=0, TsY=0.20990β}]; itPathPlot161d = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.25], PlotLegends -> {β[Delta]=0, TsY=0.20990β}]; ktPathPlot161d = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.25], PlotLegends -> {β[Delta]=0, TsY=0.20990β}]; (**)
Print[βChanges from [Theta]=0.72 to [Theta]=1.61 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath161[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath161[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath161[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath161[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath161[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath161[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath161[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath161[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath161[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath161[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath161[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath161[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.61:β] Print[β5y%: β, yPath161[5]] Print[β5c%: β, cPath161[5]] Print[β5i%: β, iPath161[5]] Print[β5k%: β, kPath161[5]] Print[β10y%: β, yPath161[10]] Print[β10c%: β, cPath161[10]] Print[β10i%: β, iPath161[10]] Print[β10k%: β, kPath161[10]] Print[β20y%: β, yPath161[20]] Print[β20c%: β, cPath161[20]] Print[β20i%: β, iPath161[20]] Print[β20k%: β, kPath161[20]] (************************************************************************) (Steady State Diagram, Transition from [Theta]=0.72 to
[Theta]=1.61) Arrow1 = Graphics[{Magenta, Arrow[{{kStar1, cStar1}, {kStar1, Time161[kStar1]}}]}]; Arrow2 = Graphics[{Magenta, Arrow[{{kStar1, Time161[kStar1]}, {kStar161, cStar161}}]}]; Arrows = Show[Arrow1, Arrow2]; LociGraphic1 = Graphics[{Text[ β!(*OverscriptBox[(k), ([Application])])=0β, {38, 2.35}], Text[ β!(*OverscriptBox[(c), ([Application])])=0β, {26.5, 2.6}]}]; LociGraphic2 = Graphics[{Text[β(k0,c0)β, {27.4, 2.13}]}]; LociGraphic3 = Graphics[{Text[β(k1,c1)β, {20, 2.3}]}]; LociGraphic1Zoom = Graphics[{Text[ β!(*OverscriptBox[(k), ([Application])])=0β, {26.35, 2.275}], Text[β!(*OverscriptBox[(c), ([Application])])=0 β, {24.3, 2.305}]}]; LociGraphic2Zoom = Graphics[{Text[β(k0,c0)β, {25, 2.23}]}]; LociGraphic3Zoom = Graphics[{Text[β(k1,c1)β, {22.35, 2.2}]}]; SteadyStatePlot = Show[ckLoci161, ckLoci1, TrajectoryBelow161, TrajectoryAbove161, Arrows, LociGraphic1, LociGraphic2, LociGraphic3] SteadyStateZoom = Show[ckLoci161Zoom, ckLoci1, TrajectoryBelow161, TrajectoryAbove161, Arrows, LociGraphic1Zoom, LociGraphic2Zoom, LociGraphic3Zoom] (Time Paths from [Theta]=0.72 to new [Theta]βs) ytPathAll = Show[ytPathPlot161, ytPathPlot125, ytPathPlot089] ctPathAll = Show[{ctPathPlot161, ctPathPlot125, ctPathPlot089, cStar1Line}, PlotRange -> All] itPathAll = Show[{itPathPlot161, itPathPlot125, itPathPlot089, iStar1Line}, PlotRange -> All] (************************************************************************) (What if there were no tax? Steady state analysis) (************************************************************************) Print[βNO TAX ANALYSIS:β] (Model without Tax) (New Params) n = 0.00553; g = -0.00320; [Alpha] = 1/3; [Rho] = 0.03776; TsY = 0; [Theta] = 0.72; [Delta] = 0; (************************************************************************) (INITIAL EQUILIBRIUM) (Other eqs, [Theta]=0.89,1.25,1.61, characterized as low, mid, and
high respectively) Print[βSteady state with initial value of [Theta] = 0.72:β] kStar1 = kStar; cStar1 = cStar; yStar1 = yStar[[Alpha]]; gStar1 = gStar[[Alpha], TsY]; iStar1 = iStar[[Alpha], TsY]; cStar1Lineb = Graphics[{Dotted, Line[{{0, cStar1}, {100, cStar1}}]}]; iStar1Lineb = Graphics[{Dotted, Line[{{0, iStar1}, {100, iStar1}}]}]; Print[βy:β, yStar1] Print[βc:β, cStar1] Print[βi:β, iStar1] Print[βg:β, gStar1] Print[βk:β, kStar1] Print[βy/y:β, yStar1/yStar1] Print[βc/y:β, cStar1/yStar1] Print[βi/y:β, iStar1/yStar1] Print[βg/y:β, gStar1/yStar1] Print[βk/y:β, kStar1/yStar1] (************************************************************************) (Sensitivity Analysis) (************************************************************************) Print[βINTEREST RATE SENSITIVITY ANALYSIS:β] (Change in Interest Rate) (New Params) n = 0.00553; g = -0.00320; [Alpha] = 1/3; [Rho] = 0.05243; TsY = 0.20990; [Theta] = 0.72; [Delta] = 0; (************************************************************************) (INITIAL EQUILIBRIUM) (Other eqs, [Theta]=0.89,1.25,1.61, characterized as low, mid, and
high respectively) Print[βSteady state with initial value of [Theta] = 0.72:β] kStar1 = kStar; cStar1 = cStar; yStar1 = yStar[[Alpha]]; gStar1 = gStar[[Alpha], TsY]; iStar1 = iStar[[Alpha], TsY]; cStar1Linea = Graphics[{Dotted, Line[{{0, cStar1}, {100, cStar1}}]}]; iStar1Linea = Graphics[{Dotted, Line[{{0, iStar1}, {100, iStar1}}]}]; Print[βy: β, yStar1] Print[βc: β, cStar1] Print[βi: β, iStar1] Print[βg: β, gStar1] Print[βk: β, kStar1] Print[βy/y: β, yStar1/yStar1] Print[βc/y: β, cStar1/yStar1] Print[βi/y: β, iStar1/yStar1] Print[βg/y: β, gStar1/yStar1] Print[βk/y: β, kStar1/yStar1] (Loci) kLocus1 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}]; cLocusc1 = Graphics[{Dashed, Line[{{kStar1, 0.01}, {kStar1, 5}}]}]; ckLoci1 = Show[kLocus1, cLocusc1, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar1, cStar1][[1]]; InitialTrajectoryBelow = Plot[ck1[k], {k, 0.01, kStar1}, PlotStyle -> {Red, Dashed}]; ck2 = c /. saddleAbove[kStar1, cStar1][[1]]; InitialTrajectoryAbove = Plot[ck2[k], {k, kStar1, 40}, PlotStyle -> {Red, Dashed}]; (************************************************************************) [Theta] = 0.89; Print[βSteady state with new value of [Theta] = 0.89:β] ([Theta]=0.89 EQUILIBRIUM) kStar089 = kStar; cStar089 = cStar; yStar089 = yStar[[Alpha]]; gStar089 = gStar[[Alpha], TsY]; iStar089 = iStar[[Alpha], TsY]; Print[βy:β, yStar089] Print[βc:β, cStar089] Print[βi:β, iStar089] Print[βg:β, gStar089] Print[βk:β, kStar089] Print[β[CapitalDelta]y%: β, (((yStar089 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar089 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar089 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%: β, (((kStar089 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time089 = c /. pathFrom[kStar089, cStar089, kStar1][[1]]; kPath089 = k /. kPathFrom[Time089, kStar1][[1]]; yPath089[time_] := kPath089[time]^[Alpha]; cPath089 = c /. cPathFrom[kPath089, Time089[kStar1]][[1]]; iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]
Print[βChanges from [Theta]=0.72 to [Theta]=1.61 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath161[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath161[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath161[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath161[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath161[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath161[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath161[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath161[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath161[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath161[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath161[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath161[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=0.89:β] Print[β5y%: β, yPath089[5]] Print[β5c%: β, cPath089[5]] Print[β5i%: β, iPath089[5]] Print[β5k%: β, kPath089[5]] Print[β10y%: β, yPath089[10]] Print[β10c%: β, cPath089[10]] Print[β10i%: β, iPath089[10]] Print[β10k%: β, kPath089[10]] Print[β20y%: β, yPath089[20]] Print[β20c%: β, cPath089[20]] Print[β20i%: β, iPath089[20]] Print[β20k%: β, kPath089[20]] (************************************************************************) [Theta] = 1.25; Print[βSteady state with new value of [Theta] = 1.25:β] ([Theta]=1.25 EQUILIBRIUM) kStar125 = kStar; cStar125 = cStar; yStar125 = yStar[[Alpha]]; gStar125 = gStar[[Alpha], TsY]; iStar125 = iStar[[Alpha], TsY]; Print[βy:β, yStar125] Print[βc:β, cStar125] Print[βi:β, iStar125] Print[βg:β, gStar125] Print[βk:β, kStar125] Print[β[CapitalDelta]y%: β, (((yStar125 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar125 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar125 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%: β, (((kStar125 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time125 = c /. pathFrom[kStar125, cStar125, kStar1][[1]]; kPath125 = k /. kPathFrom[Time125, kStar1][[1]]; yPath125[time_] := kPath125[time]^[Alpha]; cPath125 = c /. cPathFrom[kPath125, Time125[kStar1]][[1]]; iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]
Print[βChanges from [Theta]=0.72 to [Theta]=1.25 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath125[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath125[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath125[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath125[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath125[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath125[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath125[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath125[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath125[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath125[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath125[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath125[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.25:β] Print[β5y%: β, yPath125[5]] Print[β5c%: β, cPath125[5]] Print[β5i%: β, iPath125[5]] Print[β5k%: β, kPath125[5]] Print[β10y%: β, yPath125[10]] Print[β10c%: β, cPath125[10]] Print[β10i%: β, iPath125[10]] Print[β10k%: β, kPath125[10]] Print[β20y%: β, yPath125[20]] Print[β20c%: β, cPath125[20]] Print[β20i%: β, iPath125[20]] Print[β20k%: β, kPath125[20]] (************************************************************************) [Theta] = 1.61; Print[βSteady state with new value of [Theta] = 1.61:β] ([Theta]=1.61 EQUILIBRIUM) kStar161 = kStar; cStar161 = cStar; yStar161 = yStar[[Alpha]]; gStar161 = gStar[[Alpha], TsY]; iStar161 = iStar[[Alpha], TsY]; cStar1Linea = Graphics[{Dotted, Line[{{0, cStar1}, {100, cStar1}}]}]; iStar1Linea = Graphics[{Dotted, Line[{{0, iStar1}, {100, iStar1}}]}]; Print[βy:β, yStar161] Print[βc:β, cStar161] Print[βi:β, iStar161] Print[βg:β, gStar161] Print[βk:β, kStar161] Print[β[CapitalDelta]y%: β, (((yStar161 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar161 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar161 - iStar1)/iStar1))*100]; Print[β[CapitalDelta]k%: β, (((kStar161 - kStar1)/kStar1))100]; (Loci) kLocus161 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}]; (To better see change in steady state plot) kLocus161Zoom = Plot[cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}]; cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]}]; ckLoci161 = Show[kLocus161, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (To better see change in steady state plot) ckLoci161Zoom = Show[kLocus161Zoom, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar161, cStar161][[1]]; TrajectoryBelow161 = Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle -> {Red}]; ck2 = c /. saddleAbove[kStar161, cStar161][[1]]; TrajectoryAbove161 = Plot[ck2[k], {k, kStar161, 40}, PlotStyle -> {Red}]; (Time Path FROM Initial Equilibrium) Time161 = c /. pathFrom[kStar161, cStar161, kStar1][[1]]; kPath161 = k /. kPathFrom[Time161, kStar1][[1]]; yPath161[time_] := kPath161[time]^[Alpha]; cPath161 = c /. cPathFrom[kPath161, Time161[kStar1]][[1]]; iPath161[time_] := (yPath161[time](1 - TsY)) - cPath161[time] ytPathPlot161Sensitivity = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.75], PlotLegends -> {β[Rho]=0.05243β}]; ctPathPlot161Sensitivity = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.75], PlotLegends -> {β[Rho]=0.05243β}]; itPathPlot161Sensitivity = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.75], PlotLegends -> {β[Rho]=0.05243β}]; ktPathPlot161Sensitivity = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.75], PlotLegends -> {β[Rho]=0.05243β}];
Print[βChanges from [Theta]=0.72 to [Theta]=1.61 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath161[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath161[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath161[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath161[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath161[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath161[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath161[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath161[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath161[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath161[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath161[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath161[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.61:β] Print[β5y%: β, yPath161[5]] Print[β5c%: β, cPath161[5]] Print[β5i%: β, iPath161[5]] Print[β5k%: β, kPath161[5]] Print[β10y%: β, yPath161[10]] Print[β10c%: β, cPath161[10]] Print[β10i%: β, iPath161[10]] Print[β10k%: β, kPath161[10]] Print[β20y%: β, yPath161[20]] Print[β20c%: β, cPath161[20]] Print[β20i%: β, iPath161[20]] Print[β20k%: β, kPath161[20]] (************************************************************************) (Time Paths from [Theta]=0.72 to new [Theta]βs) ytPathAll = Show[{ytPathPlot161a, ytPathPlot161Sensitivity}, PlotRange -> All] ctPathAll = Show[{ctPathPlot161a, ctPathPlot161Sensitivity, cStar1Line, cStar1Linea}, PlotRange -> All] itPathAll = Show[{itPathPlot161a, itPathPlot161Sensitivity, iStar1Line, iStar1Linea}, PlotRange -> All] (************************************************************************) Print[βTAX RATIO SENSITIVITY ANALYSIS:β] (Model with higher Tax) (New Params) n = 0.00553; g = -0.00320; [Alpha] = 1/3; [Rho] = 0.03776; TsY = 0.34228; [Theta] = 0.72; [Delta] = 0; (************************************************************************) (INITIAL EQUILIBRIUM) (Other eqs, [Theta]=0.89,1.25,1.61, characterized as low, mid, and
high respectively) Print[βSteady state with initial value of [Theta] = 0.72:β] kStar1 = kStar; cStar1 = cStar; yStar1 = yStar[[Alpha]]; gStar1 = gStar[[Alpha], TsY]; iStar1 = iStar[[Alpha], TsY]; cStar1Lineb = Graphics[{Dotted, Line[{{0, cStar1}, {100, cStar1}}]}]; iStar1Lineb = Graphics[{Dotted, Line[{{0, iStar1}, {100, iStar1}}]}]; Print[βy:β, yStar1] Print[βc:β, cStar1] Print[βi:β, iStar1] Print[βg:β, gStar1] Print[βk:β, kStar1] Print[βy/y:β, yStar1/yStar1] Print[βc/y:β, cStar1/yStar1] Print[βi/y:β, iStar1/yStar1] Print[βg/y:β, gStar1/yStar1] Print[βk/y:β, kStar1/yStar1] (Loci) kLocus1 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}]; cLocusc1 = Graphics[{Dashed, Line[{{kStar1, 0.01}, {kStar1, 5}}]}]; ckLoci1 = Show[kLocus1, cLocusc1, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar1, cStar1][[1]]; InitialTrajectoryBelow = Plot[ck1[k], {k, 0.01, kStar1}, PlotStyle -> {Red, Dashed}]; ck2 = c /. saddleAbove[kStar1, cStar1][[1]]; InitialTrajectoryAbove = Plot[ck2[k], {k, kStar1, 40}, PlotStyle -> {Red, Dashed}]; (************************************************************************) [Theta] = 0.89; Print[βSteady state with new value of [Theta] = 0.89:β] ([Theta]=0.89 EQUILIBRIUM) kStar089 = kStar; cStar089 = cStar; yStar089 = yStar[[Alpha]]; gStar089 = gStar[[Alpha], TsY]; iStar089 = iStar[[Alpha], TsY]; Print[βy: β, yStar089] Print[βc: β, cStar089] Print[βi: β, iStar089] Print[βg: β, gStar089] Print[βk: β, kStar089] Print[β[CapitalDelta]y%:β, (((yStar089 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar089 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%: β, (((iStar089 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%:β, (((kStar089 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time089 = c /. pathFrom[kStar089, cStar089, kStar1][[1]]; kPath089 = k /. kPathFrom[Time089, kStar1][[1]]; yPath089[time_] := kPath089[time]^[Alpha]; cPath089 = c /. cPathFrom[kPath089, Time089[kStar1]][[1]]; iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]
Print[βChanges from [Theta]=0.72 to [Theta]=0.89 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath089[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath089[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath089[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath089[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath089[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath089[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath089[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath089[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath089[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath089[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath089[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath089[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=0.89:β] Print[β5y%: β, yPath089[5]] Print[β5c%: β, cPath089[5]] Print[β5i%: β, iPath089[5]] Print[β5k%: β, kPath089[5]] Print[β10y%: β, yPath089[10]] Print[β10c%: β, cPath089[10]] Print[β10i%: β, iPath089[10]] Print[β10k%: β, kPath089[10]] Print[β20y%: β, yPath089[20]] Print[β20c%: β, cPath089[20]] Print[β20i%: β, iPath089[20]] Print[β20k%: β, kPath089[20]] (************************************************************************) [Theta] = 1.25; Print[βSteady state with new value of [Theta] = 1.25:β] ([Theta]=1.25 EQUILIBRIUM) kStar125 = kStar; cStar125 = cStar; yStar125 = yStar[[Alpha]]; gStar125 = gStar[[Alpha], TsY]; iStar125 = iStar[[Alpha], TsY]; Print[βy:β, yStar125] Print[βc:β, cStar125] Print[βi:β, iStar125] Print[βg:β, gStar125] Print[βk:β, kStar125] Print[β[CapitalDelta]y%: β, (((yStar125 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar125 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar125 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%: β, (((kStar125 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time125 = c /. pathFrom[kStar125, cStar125, kStar1][[1]]; kPath125 = k /. kPathFrom[Time125, kStar1][[1]]; yPath125[time_] := kPath125[time]^[Alpha]; cPath125 = c /. cPathFrom[kPath125, Time125[kStar1]][[1]]; iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]
Print[βChanges from [Theta]=0.72 to [Theta]=1.25 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath125[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath125[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath125[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath125[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath125[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath125[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath125[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath125[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath125[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath125[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath125[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath125[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.25:β] Print[β5y%: β, yPath125[5]] Print[β5c%: β, cPath125[5]] Print[β5i%: β, iPath125[5]] Print[β5k%: β, kPath125[5]] Print[β10y%: β, yPath125[10]] Print[β10c%: β, cPath125[10]] Print[β10i%: β, iPath125[10]] Print[β10k%: β, kPath125[10]] Print[β20y%: β, yPath125[20]] Print[β20c%: β, cPath125[20]] Print[β20i%: β, iPath125[20]] Print[β20k%: β, kPath125[20]] (************************************************************************) [Theta] = 1.61; Print[βSteady state with new value of [Theta] = 1.61:β] ([Theta]=1.61 EQUILIBRIUM) kStar161 = kStar; cStar161 = cStar; yStar161 = yStar[[Alpha]]; gStar161 = gStar[[Alpha], TsY]; iStar161 = iStar[[Alpha], TsY]; Print[βy:β, yStar161] Print[βc:β, cStar161] Print[βi:β, iStar161] Print[βg:β, gStar161] Print[βk:β, kStar161] Print[β[CapitalDelta]y%: β, (((yStar161 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar161 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar161 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%: β, (((kStar161 - kStar1)/kStar1))100]; (Loci) kLocus161 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}]; (To better see change in steady state plot) kLocus161Zoom = Plot[cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}]; cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]}]; ckLoci161 = Show[kLocus161, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (To better see change in steady state plot) ckLoci161Zoom = Show[kLocus161Zoom, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar161, cStar161][[1]]; TrajectoryBelow161 = Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle -> {Red}]; ck2 = c /. saddleAbove[kStar161, cStar161][[1]]; TrajectoryAbove161 = Plot[ck2[k], {k, kStar161, 40}, PlotStyle -> {Red}]; (Time Path FROM Initial Equilibrium) Time161 = c /. pathFrom[kStar161, cStar161, kStar1][[1]]; kPath161 = k /. kPathFrom[Time161, kStar1][[1]]; yPath161[time_] := kPath161[time]^[Alpha]; cPath161 = c /. cPathFrom[kPath161, Time161[kStar1]][[1]]; iPath161[time_] := (yPath161[time]*(1 - TsY)) - cPath161[time] ytPathPlot161Sensitivity = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.75], PlotLegends -> {βTsY=0.34228β}]; ctPathPlot161Sensitivity = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.75], PlotLegends -> {βTsY=0.34228β}]; itPathPlot161Sensitivity = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.75], PlotLegends -> {βTsY=0.34228β}]; ktPathPlot161Sensitivity = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.75], PlotLegends -> {βTsY=0.34228β}];
Print[βChanges from [Theta]=0.72 to [Theta]=1.61 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath161[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath161[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath161[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath161[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath161[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath161[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath161[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath161[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath161[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath161[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath161[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath161[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.61:β] Print[β5y%: β, yPath161[5]] Print[β5c%: β, cPath161[5]] Print[β5i%: β, iPath161[5]] Print[β5k%: β, kPath161[5]] Print[β10y%: β, yPath161[10]] Print[β10c%: β, cPath161[10]] Print[β10i%: β, iPath161[10]] Print[β10k%: β, kPath161[10]] Print[β20y%: β, yPath161[20]] Print[β20c%: β, cPath161[20]] Print[β20i%: β, iPath161[20]] Print[β20k%: β, kPath161[20]] (************************************************************************) (Time Paths from [Theta]=0.72 to new [Theta]βs) ytPathAll = Show[{ytPathPlot161b, ytPathPlot161Sensitivity}, PlotRange -> All] ctPathAll = Show[{ctPathPlot161b, ctPathPlot161Sensitivity, cStar1Line, cStar1Linea}, PlotRange -> All] itPathAll = Show[{itPathPlot161b, itPathPlot161Sensitivity, iStar1Line, iStar1Linea}, PlotRange -> All] (************************************************************************) Print[βDEPRECIATION SENSITIVITY ANALYSIS:β] (Model with Depreciation) (New Params) n = 0.00553; g = -0.00320; [Alpha] = 1/3; [Rho] = 0.03776; TsY = 0.20990; [Theta] = 0.72; [Delta] = 0.06403; (************************************************************************) (INITIAL EQUILIBRIUM) (Other eqs, [Theta]=0.89,1.25,1.61, characterized as low, mid, and
high respectively) Print[βSteady state with initial value of [Theta] = 0.72:β] kStar1 = kStar; cStar1 = cStar; yStar1 = yStar[[Alpha]]; gStar1 = gStar[[Alpha], TsY]; iStar1 = iStar[[Alpha], TsY]; cStar1Lineb = Graphics[{Dotted, Line[{{0, cStar1}, {100, cStar1}}]}]; iStar1Lineb = Graphics[{Dotted, Line[{{0, iStar1}, {100, iStar1}}]}]; Print[βy:β, yStar1] Print[βc:β, cStar1] Print[βi:β, iStar1] Print[βg:β, gStar1] Print[βk:β, kStar1] Print[βy/y:β, yStar1/yStar1] Print[βc/y:β, cStar1/yStar1] Print[βi/y:β, iStar1/yStar1] Print[βg/y:β, gStar1/yStar1] Print[βk/y:β, kStar1/yStar1] (Loci) kLocus1 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}]; cLocusc1 = Graphics[{Dashed, Line[{{kStar1, 0.01}, {kStar1, 5}}]}]; ckLoci1 = Show[kLocus1, cLocusc1, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar1, cStar1][[1]]; InitialTrajectoryBelow = Plot[ck1[k], {k, 0.01, kStar1}, PlotStyle -> {Red, Dashed}]; ck2 = c /. saddleAbove[kStar1, cStar1][[1]]; InitialTrajectoryAbove = Plot[ck2[k], {k, kStar1, 40}, PlotStyle -> {Red, Dashed}]; (************************************************************************) [Theta] = 0.89; Print[βSteady state with new value of [Theta] = 0.89:β] ([Theta]=0.89 EQUILIBRIUM) kStar089 = kStar; cStar089 = cStar; yStar089 = yStar[[Alpha]]; gStar089 = gStar[[Alpha], TsY]; iStar089 = iStar[[Alpha], TsY]; Print[βy: β, yStar089] Print[βc: β, cStar089] Print[βi: β, iStar089] Print[βg: β, gStar089] Print[βk: β, kStar089] Print[β[CapitalDelta]y%:β, (((yStar089 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar089 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%: β, (((iStar089 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%:β, (((kStar089 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time089 = c /. pathFrom[kStar089, cStar089, kStar1][[1]]; kPath089 = k /. kPathFrom[Time089, kStar1][[1]]; yPath089[time_] := kPath089[time]^[Alpha]; cPath089 = c /. cPathFrom[kPath089, Time089[kStar1]][[1]]; iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]
Print[βChanges from [Theta]=0.72 to [Theta]=0.89 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath089[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath089[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath089[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath089[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath089[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath089[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath089[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath089[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath089[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath089[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath089[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath089[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=0.89:β] Print[β5y%: β, yPath089[5]] Print[β5c%: β, cPath089[5]] Print[β5i%: β, iPath089[5]] Print[β5k%: β, kPath089[5]] Print[β10y%: β, yPath089[10]] Print[β10c%: β, cPath089[10]] Print[β10i%: β, iPath089[10]] Print[β10k%: β, kPath089[10]] Print[β20y%: β, yPath089[20]] Print[β20c%: β, cPath089[20]] Print[β20i%: β, iPath089[20]] Print[β20k%: β, kPath089[20]] (************************************************************************) [Theta] = 1.25; Print[βSteady state with new value of [Theta] = 1.25:β] ([Theta]=1.25 EQUILIBRIUM) kStar125 = kStar; cStar125 = cStar; yStar125 = yStar[[Alpha]]; gStar125 = gStar[[Alpha], TsY]; iStar125 = iStar[[Alpha], TsY]; Print[βy:β, yStar125] Print[βc:β, cStar125] Print[βi:β, iStar125] Print[βg:β, gStar125] Print[βk:β, kStar125] Print[β[CapitalDelta]y%: β, (((yStar125 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar125 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar125 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%: β, (((kStar125 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time125 = c /. pathFrom[kStar125, cStar125, kStar1][[1]]; kPath125 = k /. kPathFrom[Time125, kStar1][[1]]; yPath125[time_] := kPath125[time]^[Alpha]; cPath125 = c /. cPathFrom[kPath125, Time125[kStar1]][[1]]; iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]
Print[βChanges from [Theta]=0.72 to [Theta]=1.25 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath125[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath125[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath125[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath125[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath125[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath125[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath125[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath125[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath125[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath125[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath125[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath125[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.25:β] Print[β5y%: β, yPath125[5]] Print[β5c%: β, cPath125[5]] Print[β5i%: β, iPath125[5]] Print[β5k%: β, kPath125[5]] Print[β10y%: β, yPath125[10]] Print[β10c%: β, cPath125[10]] Print[β10i%: β, iPath125[10]] Print[β10k%: β, kPath125[10]] Print[β20y%: β, yPath125[20]] Print[β20c%: β, cPath125[20]] Print[β20i%: β, iPath125[20]] Print[β20k%: β, kPath125[20]] (************************************************************************) [Theta] = 1.61; Print[βSteady state with new value of [Theta] = 1.61:β] ([Theta]=1.61 EQUILIBRIUM) kStar161 = kStar; cStar161 = cStar; yStar161 = yStar[[Alpha]]; gStar161 = gStar[[Alpha], TsY]; iStar161 = iStar[[Alpha], TsY]; Print[βy:β, yStar161] Print[βc:β, cStar161] Print[βi:β, iStar161] Print[βg:β, gStar161] Print[βk:β, kStar161] Print[β[CapitalDelta]y%: β, (((yStar161 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar161 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar161 - iStar1)/iStar1))*100]; Print[β[CapitalDelta]k%: β, (((kStar161 - kStar1)/kStar1))100]; (Loci) kLocus161 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}]; (To better see change in steady state plot) kLocus161Zoom = Plot[cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}]; cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]}]; ckLoci161 = Show[kLocus161, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (To better see change in steady state plot) ckLoci161Zoom = Show[kLocus161Zoom, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar161, cStar161][[1]]; TrajectoryBelow161 = Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle -> {Red}]; ck2 = c /. saddleAbove[kStar161, cStar161][[1]]; TrajectoryAbove161 = Plot[ck2[k], {k, kStar161, 40}, PlotStyle -> {Red}]; (Time Path FROM Initial Equilibrium) Time161 = c /. pathFrom[kStar161, cStar161, kStar1][[1]]; kPath161 = k /. kPathFrom[Time161, kStar1][[1]]; yPath161[time_] := kPath161[time]^[Alpha]; cPath161 = c /. cPathFrom[kPath161, Time161[kStar1]][[1]]; iPath161[time_] := (yPath161[time](1 - TsY)) - cPath161[time] ytPathPlot161Sensitivity = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.75], PlotLegends -> {β[Delta]=0.06403β}]; ctPathPlot161Sensitivity = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.75], PlotLegends -> {β[Delta]=0.06403β}]; itPathPlot161Sensitivity = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.75], PlotLegends -> {β[Delta]=0.06403β}]; ktPathPlot161Sensitivity = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.75], PlotLegends -> {β[Delta]=0.06403β}];
Print[βChanges from [Theta]=0.72 to [Theta]=1.61 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath161[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath161[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath161[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath161[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath161[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath161[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath161[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath161[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath161[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath161[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath161[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath161[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.61:β] Print[β5y%: β, yPath161[5]] Print[β5c%: β, cPath161[5]] Print[β5i%: β, iPath161[5]] Print[β5k%: β, kPath161[5]] Print[β10y%: β, yPath161[10]] Print[β10c%: β, cPath161[10]] Print[β10i%: β, iPath161[10]] Print[β10k%: β, kPath161[10]] Print[β20y%: β, yPath161[20]] Print[β20c%: β, cPath161[20]] Print[β20i%: β, iPath161[20]] Print[β20k%: β, kPath161[20]] (************************************************************************) (Time Paths from [Theta]=0.72 to new [Theta]βs) ytPathAll = Show[{ytPathPlot161c, ytPathPlot161Sensitivity}, PlotRange -> All] ctPathAll = Show[{ctPathPlot161c, ctPathPlot161Sensitivity, cStar1Line, cStar1Linea}, PlotRange -> All] itPathAll = Show[{itPathPlot161c, itPathPlot161Sensitivity, iStar1Line, iStar1Linea}, PlotRange -> All] (************************************************************************) Print[βDEPRECIATION + NO TAX SENSITIVITY ANALYSIS:β] (Model with Depreciation) (New Params) n = 0.00553; g = -0.00320; [Alpha] = 1/3; [Rho] = 0.03776; TsY = 0; [Theta] = 0.72; [Delta] = 0.06403; (Filename: SensitivityAnalysisDepreciationNoTax.nb) (************************************************************************) (INITIAL EQUILIBRIUM) (Other eqs, [Theta]=0.89,1.25,1.61, characterized as low, mid, and
high respectively) Print[βSteady state with initial value of [Theta] = 0.72:β] kStar1 = kStar; cStar1 = cStar; yStar1 = yStar[[Alpha]]; gStar1 = gStar[[Alpha], TsY]; iStar1 = iStar[[Alpha], TsY]; cStar1Lineb = Graphics[{Dotted, Line[{{0, cStar1}, {100, cStar1}}]}]; iStar1Lineb = Graphics[{Dotted, Line[{{0, iStar1}, {100, iStar1}}]}]; Print[βy:β, yStar1] Print[βc:β, cStar1] Print[βi:β, iStar1] Print[βg:β, gStar1] Print[βk:β, kStar1] Print[βy/y:β, yStar1/yStar1] Print[βc/y:β, cStar1/yStar1] Print[βi/y:β, iStar1/yStar1] Print[βg/y:β, gStar1/yStar1] Print[βk/y:β, kStar1/yStar1] (Loci) kLocus1 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Green}]; cLocusc1 = Graphics[{Dashed, Line[{{kStar1, 0.01}, {kStar1, 5}}]}]; ckLoci1 = Show[kLocus1, cLocusc1, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar1, cStar1][[1]]; InitialTrajectoryBelow = Plot[ck1[k], {k, 0.01, kStar1}, PlotStyle -> {Red, Dashed}]; ck2 = c /. saddleAbove[kStar1, cStar1][[1]]; InitialTrajectoryAbove = Plot[ck2[k], {k, kStar1, 40}, PlotStyle -> {Red, Dashed}]; (************************************************************************) [Theta] = 0.89; Print[βSteady state with new value of [Theta] = 0.89:β] ([Theta]=0.89 EQUILIBRIUM) kStar089 = kStar; cStar089 = cStar; yStar089 = yStar[[Alpha]]; gStar089 = gStar[[Alpha], TsY]; iStar089 = iStar[[Alpha], TsY]; Print[βy: β, yStar089] Print[βc: β, cStar089] Print[βi: β, iStar089] Print[βg: β, gStar089] Print[βk: β, kStar089] Print[β[CapitalDelta]y%:β, (((yStar089 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar089 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%: β, (((iStar089 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%:β, (((kStar089 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time089 = c /. pathFrom[kStar089, cStar089, kStar1][[1]]; kPath089 = k /. kPathFrom[Time089, kStar1][[1]]; yPath089[time_] := kPath089[time]^[Alpha]; cPath089 = c /. cPathFrom[kPath089, Time089[kStar1]][[1]]; iPath089[time_] := (yPath089[time]*(1 - TsY)) - cPath089[time]
Print[βChanges from [Theta]=0.72 to [Theta]=0.89 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath089[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath089[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath089[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath089[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath089[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath089[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath089[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath089[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath089[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath089[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath089[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath089[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=0.89:β] Print[β5y%: β, yPath089[5]] Print[β5c%: β, cPath089[5]] Print[β5i%: β, iPath089[5]] Print[β5k%: β, kPath089[5]] Print[β10y%: β, yPath089[10]] Print[β10c%: β, cPath089[10]] Print[β10i%: β, iPath089[10]] Print[β10k%: β, kPath089[10]] Print[β20y%: β, yPath089[20]] Print[β20c%: β, cPath089[20]] Print[β20i%: β, iPath089[20]] Print[β20k%: β, kPath089[20]] (************************************************************************) [Theta] = 1.25; Print[βSteady state with new value of [Theta] = 1.25:β] ([Theta]=1.25 EQUILIBRIUM) kStar125 = kStar; cStar125 = cStar; yStar125 = yStar[[Alpha]]; gStar125 = gStar[[Alpha], TsY]; iStar125 = iStar[[Alpha], TsY]; Print[βy:β, yStar125] Print[βc:β, cStar125] Print[βi:β, iStar125] Print[βg:β, gStar125] Print[βk:β, kStar125] Print[β[CapitalDelta]y%: β, (((yStar125 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar125 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar125 - iStar1)/iStar1))100]; Print[β[CapitalDelta]k%: β, (((kStar125 - kStar1)/kStar1))100]; (Time Path FROM Initial Equilibrium) Time125 = c /. pathFrom[kStar125, cStar125, kStar1][[1]]; kPath125 = k /. kPathFrom[Time125, kStar1][[1]]; yPath125[time_] := kPath125[time]^[Alpha]; cPath125 = c /. cPathFrom[kPath125, Time125[kStar1]][[1]]; iPath125[time_] := (yPath125[time]*(1 - TsY)) - cPath125[time]
Print[βChanges from [Theta]=0.72 to [Theta]=1.25 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath125[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath125[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath125[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath125[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath125[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath125[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath125[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath125[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath125[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath125[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath125[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath125[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.25:β] Print[β5y%: β, yPath125[5]] Print[β5c%: β, cPath125[5]] Print[β5i%: β, iPath125[5]] Print[β5k%: β, kPath125[5]] Print[β10y%: β, yPath125[10]] Print[β10c%: β, cPath125[10]] Print[β10i%: β, iPath125[10]] Print[β10k%: β, kPath125[10]] Print[β20y%: β, yPath125[20]] Print[β20c%: β, cPath125[20]] Print[β20i%: β, iPath125[20]] Print[β20k%: β, kPath125[20]] (************************************************************************) [Theta] = 1.61; Print[βSteady state with new value of [Theta] = 1.61:β] ([Theta]=1.61 EQUILIBRIUM) kStar161 = kStar; cStar161 = cStar; yStar161 = yStar[[Alpha]]; gStar161 = gStar[[Alpha], TsY]; iStar161 = iStar[[Alpha], TsY]; Print[βy:β, yStar161] Print[βc:β, cStar161] Print[βi:β, iStar161] Print[βg:β, gStar161] Print[βk:β, kStar161] Print[β[CapitalDelta]y%: β, (((yStar161 - yStar1)/yStar1))100]; Print[β[CapitalDelta]c%: β, (((cStar161 - cStar1)/cStar1))100]; Print[β[CapitalDelta]i%:β, (((iStar161 - iStar1)/iStar1))*100]; Print[β[CapitalDelta]k%: β, (((kStar161 - kStar1)/kStar1))100]; (Loci) kLocus161 = Plot[cFunction /. k[t] -> k, {k, 0, 40}, PlotStyle -> {Black}]; (To better see change in steady state plot) kLocus161Zoom = Plot[cFunction /. k[t] -> k, {k, 20, 26.75}, PlotStyle -> {Black}]; cLocusc161 = Graphics[{Line[{{kStar161, 0.01}, {kStar161, 5}}]}]; ckLoci161 = Show[kLocus161, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (To better see change in steady state plot) ckLoci161Zoom = Show[kLocus161Zoom, cLocusc161, AxesLabel -> {βkβ, βcβ}]; (Saddle Path) ck1 = c /. saddleBelow[kStar161, cStar161][[1]]; TrajectoryBelow161 = Plot[ck1[k], {k, 0.01, kStar161}, PlotStyle -> {Red}]; ck2 = c /. saddleAbove[kStar161, cStar161][[1]]; TrajectoryAbove161 = Plot[ck2[k], {k, kStar161, 40}, PlotStyle -> {Red}]; (Time Path FROM Initial Equilibrium) Time161 = c /. pathFrom[kStar161, cStar161, kStar1][[1]]; kPath161 = k /. kPathFrom[Time161, kStar1][[1]]; yPath161[time_] := kPath161[time]^[Alpha]; cPath161 = c /. cPathFrom[kPath161, Time161[kStar1]][[1]]; iPath161[time_] := (yPath161[time](1 - TsY)) - cPath161[time] ytPathPlot161Sensitivity = Plot[yPath161[t], {t, 0, 100}, AxesLabel -> {t, y}, PlotStyle -> RGBColor[1, 0, 0, 0.75], PlotLegends -> {β[Delta]=0.06403, TsY=0β}]; ctPathPlot161Sensitivity = Plot[cPath161[t], {t, 0, 100}, AxesLabel -> {t, c}, PlotStyle -> RGBColor[0, 1, 0, 0.75], PlotLegends -> {β[Delta]=0.06403, TsY=0β}]; itPathPlot161Sensitivity = Plot[iPath161[t], {t, 0, 100}, AxesLabel -> {t, i}, PlotStyle -> RGBColor[0, 0, 1, 0.75], PlotLegends -> {β[Delta]=0.06403, TsY=0β}]; ktPathPlot161Sensitivity = Plot[kPath161[t], {t, 0, 100}, AxesLabel -> {t, k}, PlotStyle -> RGBColor[1, 0, 1, 0.75], PlotLegends -> {β[Delta]=0.06403, TsY=0β}];
Print[βChanges from [Theta]=0.72 to [Theta]=1.61 in order y, c, i,
k, 5, 10, and 20 years into transition:β] Print[β5[CapitalDelta]y%:β, (((yPath161[5] - yStar1)/yStar1))100] Print[β5[CapitalDelta]c%: β, (((cPath161[5] - cStar1)/cStar1))100] Print[β5[CapitalDelta]i%: β, (((iPath161[5] - iStar1)/iStar1))100] Print[β5[CapitalDelta]k%:β, (((kPath161[5] - kStar1)/kStar1))100] Print[β10[CapitalDelta]y%: β, (((yPath161[10] - yStar1)/ yStar1))100] Print[β10[CapitalDelta]c%: β, (((cPath161[10] - cStar1)/ cStar1))100] Print[β10[CapitalDelta]i%:β, (((iPath161[10] - iStar1)/ iStar1))100] Print[β10[CapitalDelta]k%: β, (((kPath161[10] - kStar1)/ kStar1))100] Print[β20[CapitalDelta]y%: β, (((yPath161[20] - yStar1)/ yStar1))100] Print[β20[CapitalDelta]c%:β, (((cPath161[20] - cStar1)/ cStar1))100] Print[β20[CapitalDelta]i%: β, (((iPath161[20] - iStar1)/ iStar1))100] Print[β20[CapitalDelta]k%: β, (((kPath161[20] - kStar1)/kStar1))100]
Print[βGrowth of y, c, i, k, 5, 10, and 20 years into transition
between steady states characterized by [Theta]=0.72 to
[Theta]=1.61:β] Print[β5y%:β, yPath161[5]] Print[β5c%:β, cPath161[5]] Print[β5i%:β, iPath161[5]] Print[β5k%:β, kPath161[5]] Print[β10y%:β, yPath161[10]] Print[β10c%:β, cPath161[10]] Print[β10i%:β, iPath161[10]] Print[β10k%:β, kPath161[10]] Print[β20y%:β, yPath161[20]] Print[β20c%:β, cPath161[20]] Print[β20i%:β, iPath161[20]] Print[β20k%:β, kPath161[20]] (************************************************************************) (Time Paths from [Theta]=0.72 to new [Theta]βs) ytPathAll = Show[{ytPathPlot161d, ytPathPlot161Sensitivity}, PlotRange -> All] ctPathAll = Show[{ctPathPlot161d, ctPathPlot161Sensitivity, cStar1Line, cStar1Linea}, PlotRange -> All] itPathAll = Show[{itPathPlot161d, itPathPlot161Sensitivity, iStar1Line, iStar1Linea}, PlotRange -> All] ```